出生于美国,在中国工作了 13 年的码特认为,AI 无国界,技术解决的是全球性的问题,具备全球化视野和格局是 AI 行业企业家的挑战和必备素养。
从微软亚洲研究院走出来的 CTO
颖奇:非常感谢码隆科技 CTO 码特接受我们的采访。您作为一个在中国创业做 AI 技术的美国人,能否先简单介绍一下您在 AI 领域中的成长经历和故事?
码特:计算机视觉一直是我的兴趣,我在 20 岁左右就发表了 CVPR 论文。我在毕业后就进入美国微软,之后又转到中国,去追寻我在计算机视觉领域的梦想。我在微软亚洲研究院的第一个项目是做条形码识别,是为 Pocket PC 写一维和二维的解码器。这个经历让我想到了零售行业,因为零售业的类似场景有很多,但我当时做的工作还属于传统的计算机视觉。
我在微软研究院工作的过程中,有机会接触到最前沿的事物。2012 年,我在天津展示了微软研究院的即时翻译技术——我说英语的同时,AI 程序可以实时翻译成中文,我非常荣幸见证这一时刻的到来,这也让我看到了未来 AI 将是一个大趋势。
在微软亚洲研究院工作了八年之后,我和最好的朋友兼同事黄鼎隆博士发现 AI 创业的最佳时机到了。码隆科技创立于 2014 年,「码隆」是由「码特」的「码」和「鼎隆」的「隆」组成,当然还有另外一层含义就是「码农」。后来,虽然我离开了微软去创业,但仍然是关系紧密的微软校友。同时,码隆也是微软加速器第六期的企业学员,是微软创新计划的一部分。
码特:我们不仅重视在 AI 行业中建立影响力,更重视 AI 给其他行业带来的影响。ProductAI 是我们最早大众化的产品,是一个商品识别平台。但后续我们的战略上有一些聚焦,更专注于服务各个行业的龙头企业,可以帮助他们解决计算机视觉和商品识别的业务问题。因为我们发现通用产品解决的是相对浅层的问题,如果要想给行业带来变革,就一定要深入到行业中去。比如我们现在的 RetailAI 重点聚焦于零售行业,StyleAI 重点聚焦于服装纺织行业等,之后会有更多专注于垂直行业深度探索的定制化开发。
颖奇:同一个领域里不同客户的相似性有多少?或者他们也都有不同之处?
码特:我们在零售行业做得很深,从我们观察来说,每个公司,尤其是创业公司的能力是有限的,大家一开始就用新的技术和不同的行业去进行碰撞和尝试。而在后期的话,随着公司的体量不同和发展策略有所变化,一定要去解决最贴近他们的实际问题才能够走下去。现在的 AI 公司都会有一个更加聚焦的成长趋向。
颖奇:能否分享一下您认为的 AI 或者 ProductAI 在未来五年的产品形态?会为类似的垂直行业提供怎样的产品和解决方案?
码特:之前,AI 是「酷」的代名词,现在 AI 是「真」的代名词。解决真正的问题,才是一个健康的产业。我不认为你会想看到比如一些疯狂的科幻小说里的科幻场景,你想看到的是一些能带来真正价值的东西,特别是为客户、大企业解决真正的问题。因此,我们未来五年的目标是用 AI 为世界大型企业解决问题,尤其是在零售业,他们尤为重视成本效益和实用性。